

Liabilities into Assets: Utilizing Legacy Mines for Pumped Storage

October 26, 2021

Roman Sidortsov, PhD, JD, LLM

Associate Professor of Energy Policy, Department of Social Sciences, Michigan Technological University

Senior Research Fellow In Energy Justice And Transitions, Science Policy Research Unit, University of Sussex

Alfred P. Sloan Foundation

Contributing Authors:

Noah Baliat Jacob Chizek	MTU, Undergraduate Student, Mechanical Engineering MTU, Undergraduate Student, Mechanical Engineering	
Hilde Eide	Northern Michigan University, Undergraduate Student,	
	Environmental Studies	
Zoe Ketola	MTU, Master's student, Social Sciences	
Shaelyn Koleber	MTU, Undergraduate Student, Civil and Environmental	A Case f
	Engineering	
Donald Lee	MTU, Doctoral student, Social Sciences	Pumped U
Evan Robb	MTU, Undergraduate Student, Mechanical Engineering	
Trevor VanDyke	MTU, Undergraduate Student, Mechanical Engineering	
Stanley Vitton	MTU, Professor, Civil, Environmental, and Geospatial	
	Engineering	
Alex Wilt	MTU, Undergraduate Student, Mechanical Engineering and	
	Electrical Engineering	

PUSHing for Storage

A Case for Repurposing Decommissioned Mines for Pumped Underground Storage Hydro (PUSH) in the United States

Technical Report

Contributors:

Qingli Dai	MTU, Associate Professor of Civil and Environmental Engineering
Joseph Dancy	MTU, KETL Co-Founder
Shuaicheng Guo	MTU, Postdoctoral Researcher, Mechanical Engineering
Jennifer Rachels	MTU, Doctoral student, Social Sciences
Emily Rutledge	MTU, Undergraduate Student, Civil and Environmental
	Engineering
Chelsea Schelly	MTU, Associate Professor of Sociology
Chee-Wooi Ten	Associate Professor of Electrical and Computer Engineering

October 2021

Roman Sidortsov, Shardul Tiwari, Timothy Scarlett, Ana Dyreson &

David Watkins

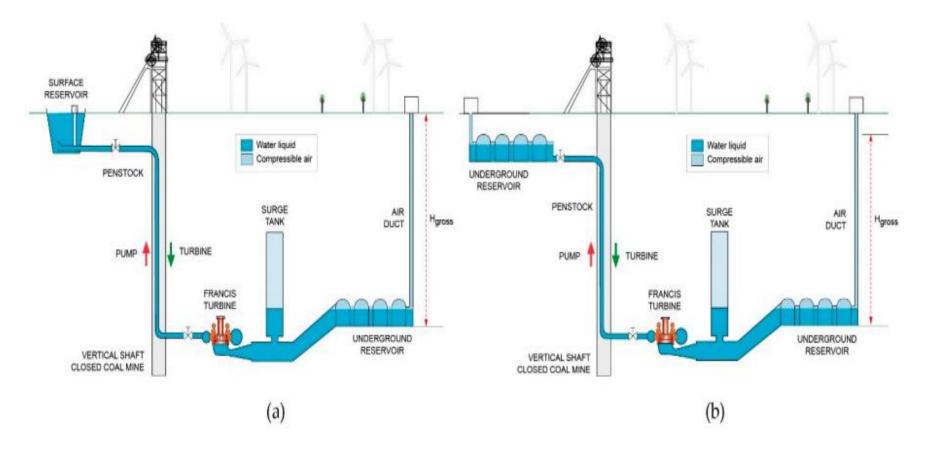
The Energy Transition

Photo credit: Roman Sidortsov,

Storage must grow:

2020: 23.2 GW

2050: 120 GW


Photo credit: MagicBones, London. https://www.picfair.com/pics/09434662london-england-feb-22-2019-large-pile-ofold-used-corroded-batteries-at-a-ukrecycling-centre

Pump Storage Hydro: Ludington

Photo credit: Consumers Energy on Flikr: https://www.flickr.com/photos/consumersenergy/28497624290

PUSH in a Nutshell

Source: Menéndez, J., Fernández-Oro, J. M., & Loredo, J., 2020

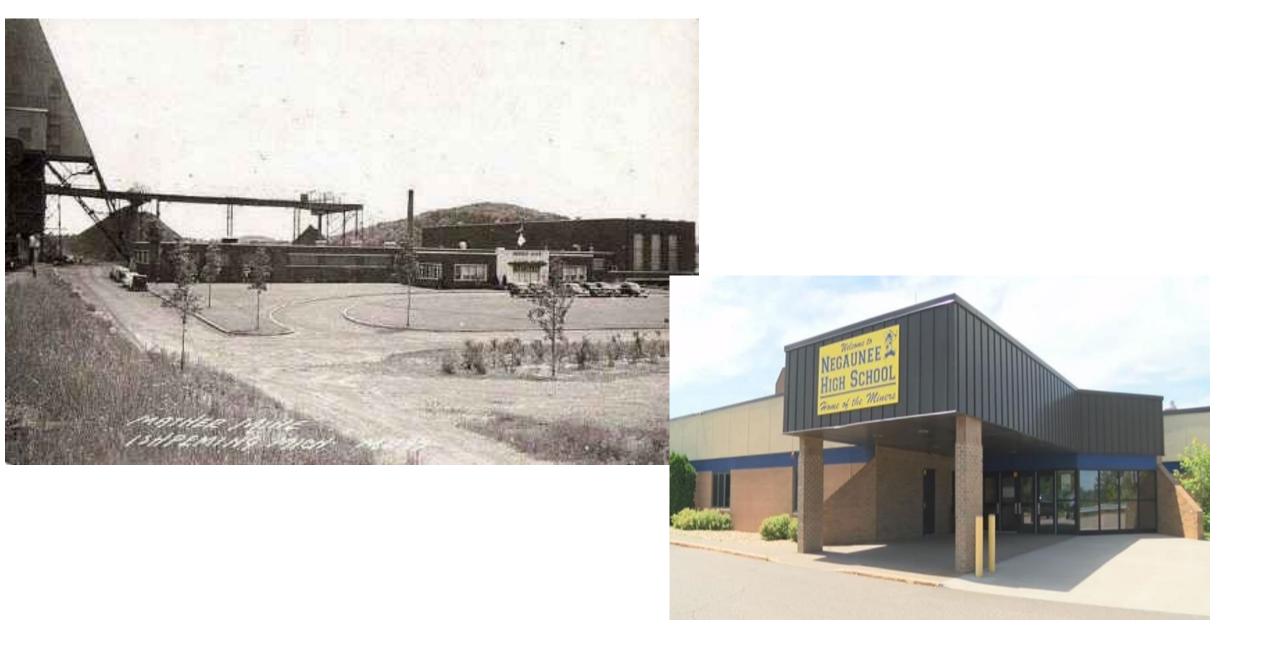
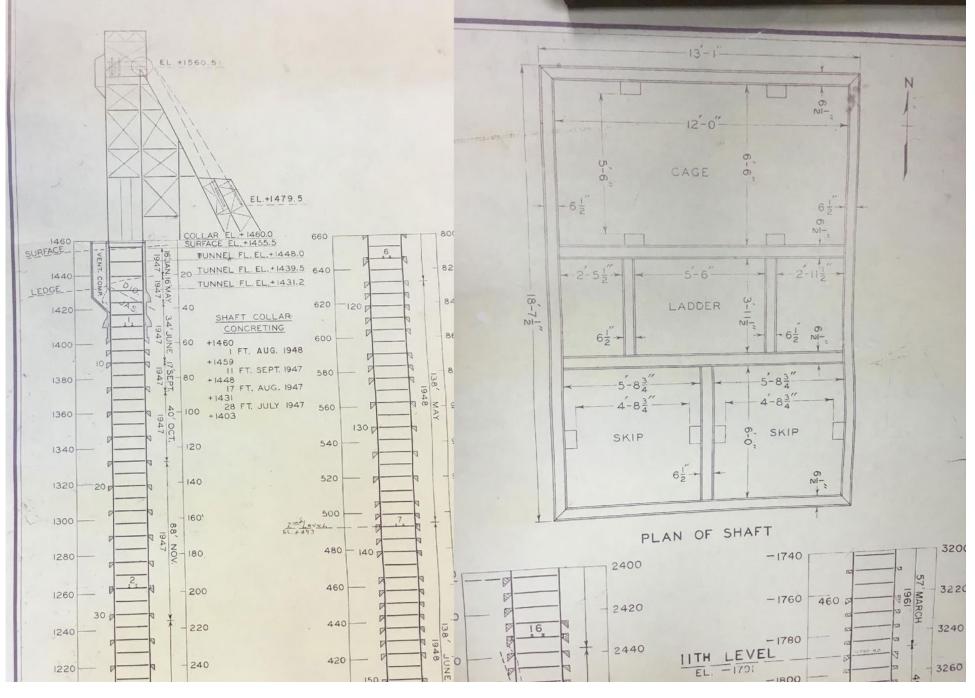
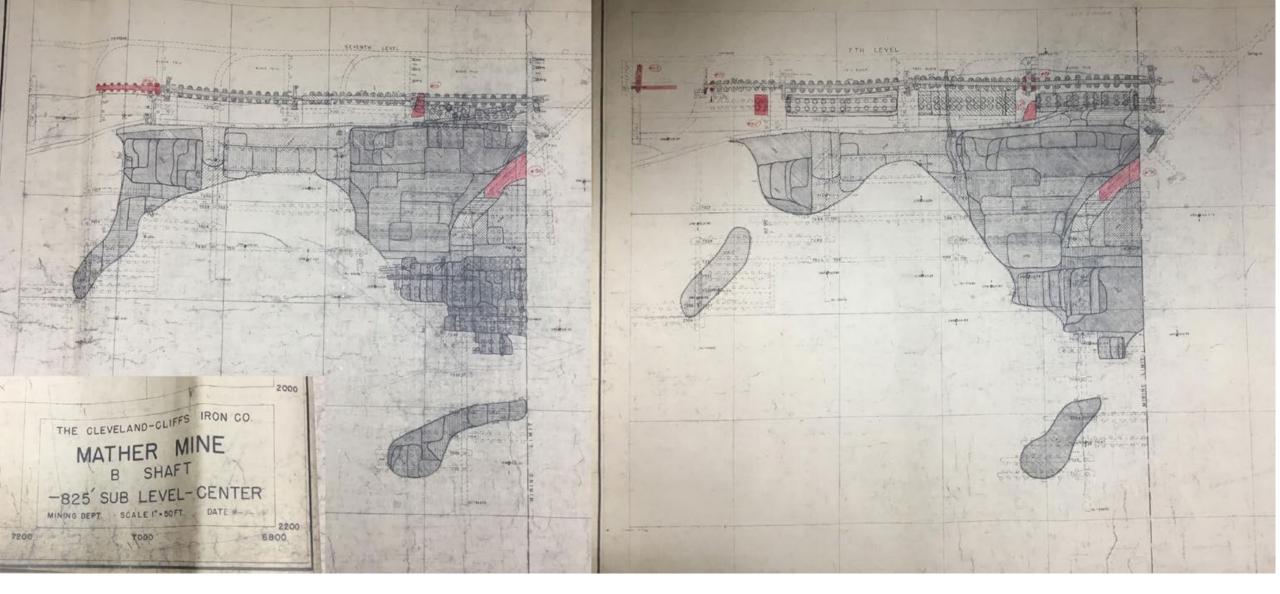
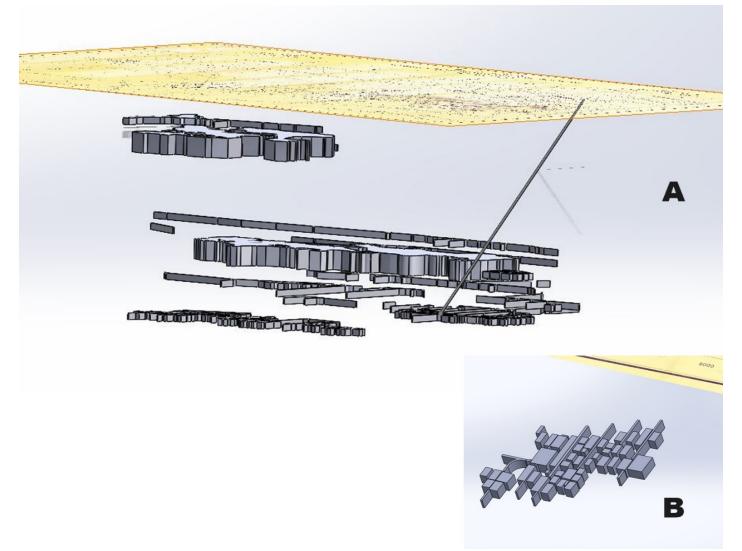
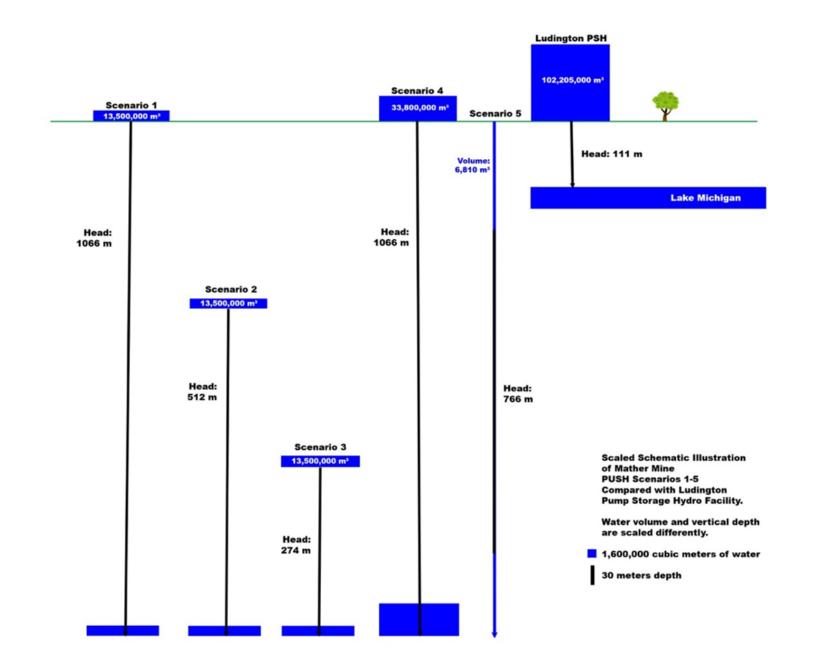




Photo credit: Paul Petosky, GeneologyTrails.com





SolidWorks Model

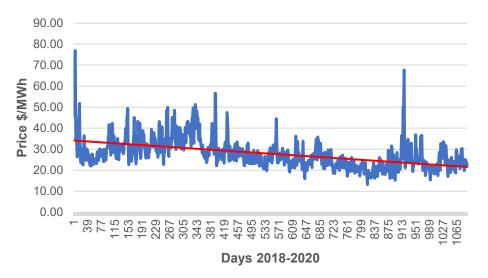
Scenario	High Volume Estimate (m ³)	Low Volume Estimate (m ³)	Maximum Head (m)
Scenario 1: Surface pond to Levels 11-12	13,536,062	4,583,673	1066
Scenario 2: Levels 2-4 to Levels 11-12	13,536,062	4,583,673	512
Scenario 3: Level 6-8 to Levels 11-12	13,536,062	4,583,673	274
Scenario 4: Surface to levels 7-12	33,800,000	18,551,208	792
Scenario 5: Shaft only	6,810	6,810	766

Volume: 793,800 m³ (Scenarios 1-4), 6,810 m³ (Scenario 5), flow rate 10.5 m³/sec per shaft; pumping time: 7hrs; overall efficiency: 80%

Scenarios	Gross Head (m)	Head Loss (Hf) m	Net Head (m)	Penstock Diameter (m)	Power (MW)	Energy Generated (MWh)
1	1,066	111	955	1.2*3	295	1,666
2	512	53	459	1.2*3	142	800
3	274	29	245	1.2*3	76	428
4	792	83	709	1.2*3	219	1,238
5	766	80	686	1.2*3	5	31

Model 3 of long-term energy storage scenarios

Scenarios	UR and LR Volumes (m3)	Net Head (m)	Flow Rate (single pipe) m3/sec	Generation time (hr)	Power (MW)	Total Power Generation (MWh)
Scenario 1 (High volume estimate)	33,800,000	709	10.5	894	73	52,188
Scenario 1 (Low volume estimate)	18,551,208	709	10.5	491	73	28,643
Scenario 2 (High Volume)	13,536,062	459	10.5	358	47	13,530
Scenario 2 (Low volume)	4,583,673	459	10.5	121	47	4,581


Costs

- CAPEX
 - Analysis of 436 cost data points for PSH facilities, PUSH facilities, or both, from 31 sources
 - PUSH capex range: 1.34 million \$/MW to 4.85 million \$/MW
- LCOE & LCOS
 - LCOE = fixed costs (FC) ÷ capacity factor (cf) + variable costs (VC)
 - LCOS = LCOE for storage
 - Pumping cost = fuel cost=electricity cost
- Cost recovery
 - PPA
 - Market participation (electricity + ancillary services + capacity)
 - Cost of service recovery

		Avg Off	Avg Peak	Price	Price
Node	Year	Peak Price	Price	Difference	Difference
		(\$/MWh)	(\$/MWh)	(\$/MWh)	Delta (Ratio)
Michigan	2018-20	21.69	30.34	8.65	1.40
Hub	2018-20	21.09	30.34	0.05	1.40
Integrated	2018-20	21.71	31.16	9.45	1.44
Node	2010-20	21.71	51.10	3.43	1.44
Warden	2018-20	21.27	30.54	9.27	1.44
Zone	2010-20	21.21	30.34	9.21	1.44

Three-year designated peak and off-peak pricing for the three target nodes

Node	Year	Avg Off Peak Price (\$/MWh)	Avg Peak Price (\$/MWh)	Price Difference (\$/MWh)	Price Difference Delta (Ratio)
Michigan Hub	2018-20	21.55	33.56	12.01	1.56
Integrated Node	2018-20	21.12	34.04	12.92	1.61
Warden Zone	2018-20	20.83	34.26	13.43	1.64

Average Daily pricing at Michigan hub nodes for years 2018-20

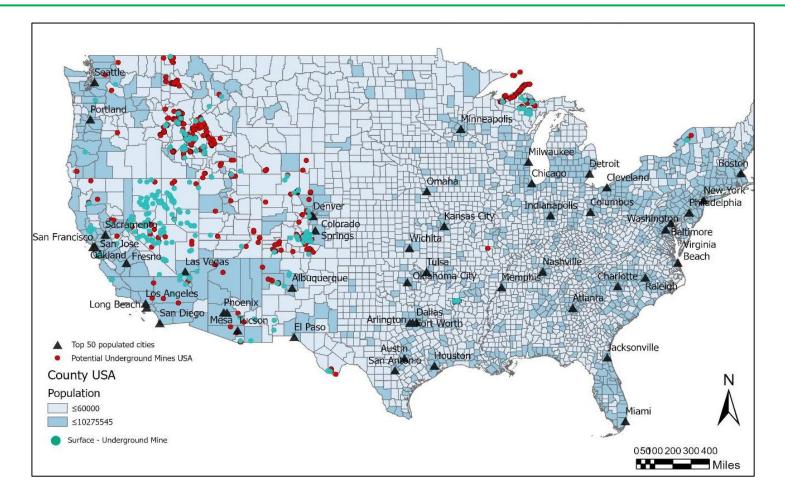
- Financial lifeline = little effect
- DR = significant effect
- The existing subsidy = significant effect

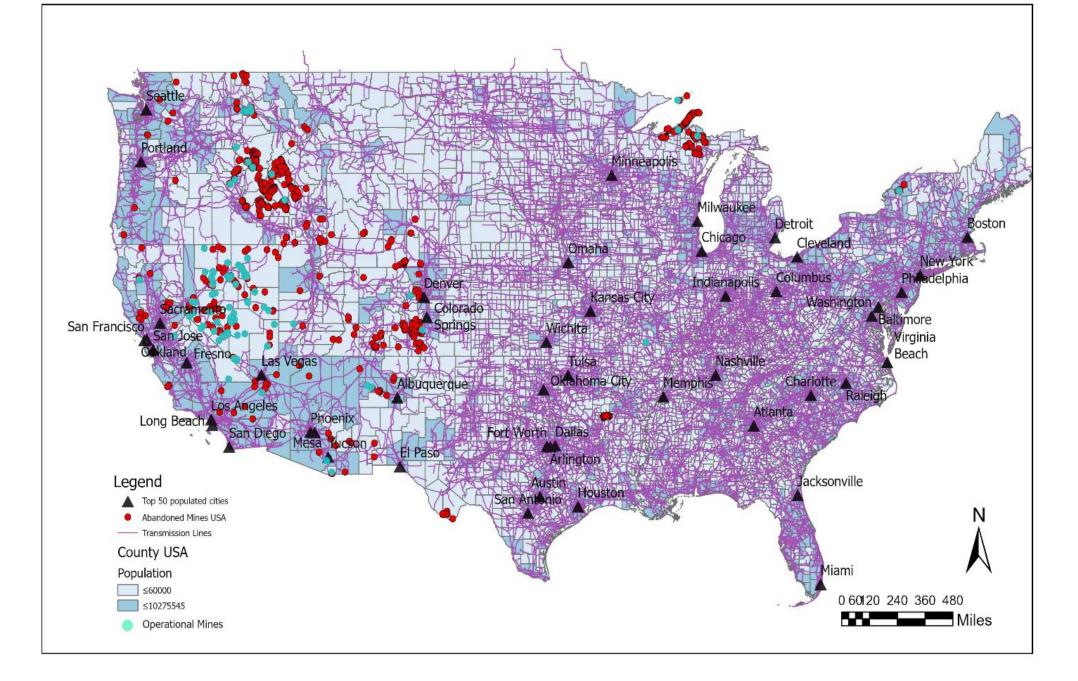
Three-year actual peak and off-peak pricing for the three target nodes

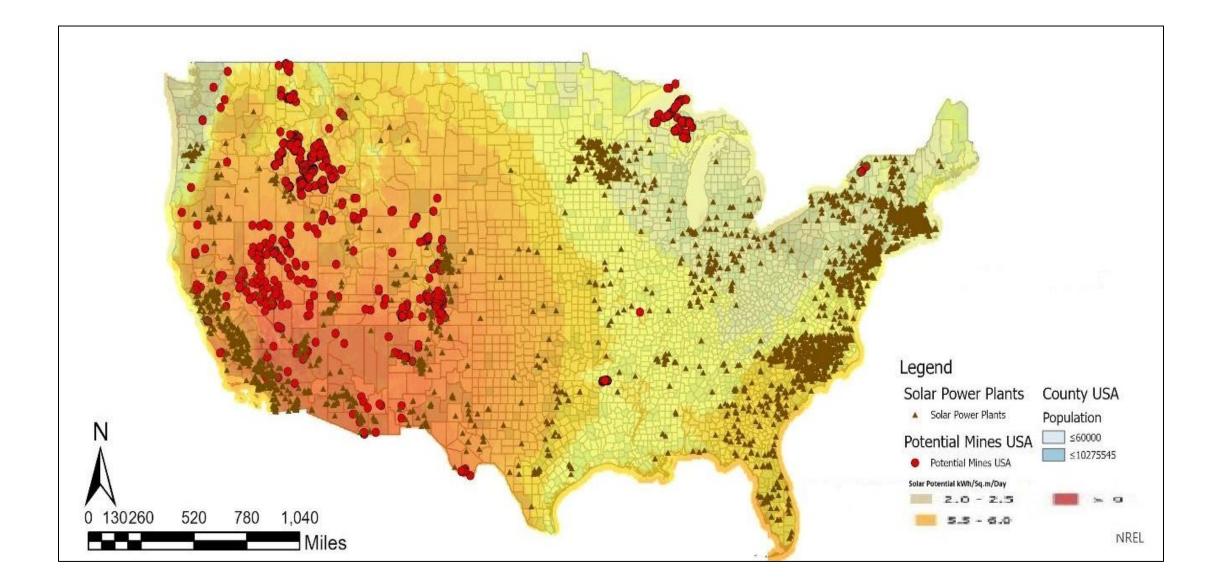
Impact of PVPR on the revenue of PUSH facility Scenario 1, 20% Tax incentive, 5% DR

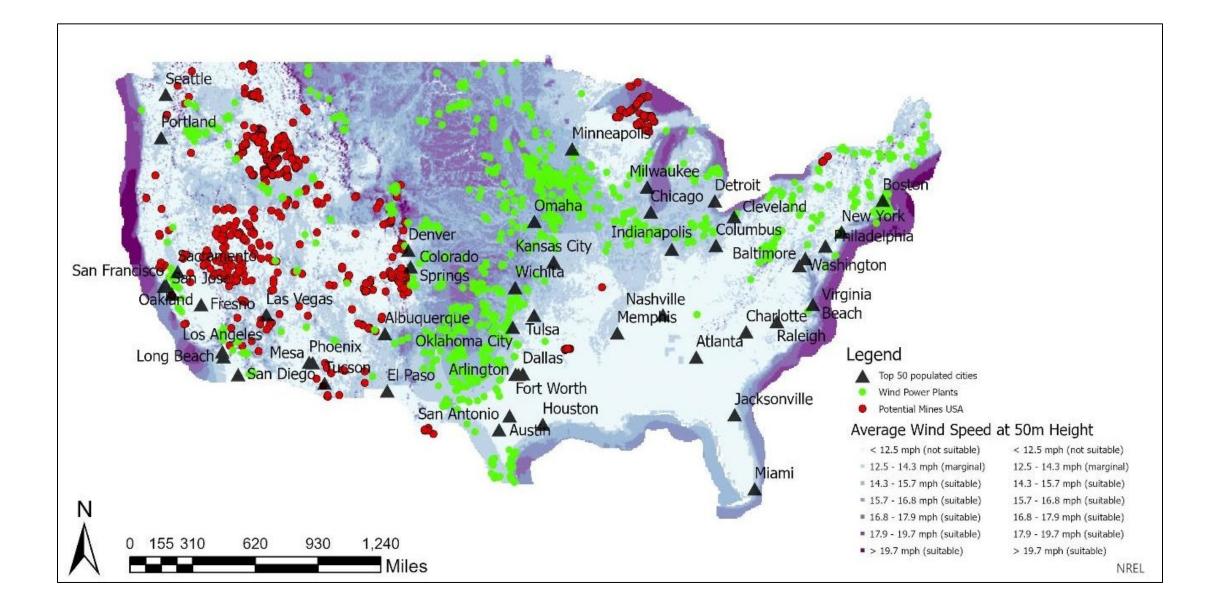
Item	PVPR 1:3	PVPR 1:4	PVPR 1:5	Unit		
Electricity Revenue	\$36,437,919	\$48,583,892	\$60,729,865	\$/Yr		
Annual profit	\$6,062,410	\$18,208,383	\$30,354,356	\$/Yr		
PUSH facility Scenario 1: Partially subterranean, 295 MW nameplate capacity, 583,100 MWh annual energy stored						

Impact of PVPR ratio on the revenue of PUSH facility Scenario 2, 20% Tax incentive, 5% DR


ltem	PVPR 1:3	PVPR 1:4	PVPR 1:5	Unit	
Electricity Revenue	\$17,497,200	\$23,329,600	\$29,162,000	\$/Yr	
Annual profit	\$2,719,884	\$8,552,284	\$14,384,684	\$/Yr	
PUSH facility Scenario 2: Fully subterranean, 142 MW nameplate capacity, 280,000 MWh annual energy stored					


Potential PUSH site location with solar map


- Total 968 mines identified as feasible mines for PUSH development
- 873 mines are past producing mines and 95 are currently operational
- 706 mines are completely underground and 262 are semi – underground mines
- Marquette county have the most mines feasible for PUSH in a county with over 60,000 people



Map showing load centers (cities and counties) with mine location

No.	State	No of mines	Size
1	Arizona	13	Small and large
2	Arkansas	24	Small
3	California	26	Small, medium, large
4	Colorado	145	Small, medium, large
5	Idaho	397	Small, medium, large
6	Michigan	144	Small, medium, large
7	Missouri	1	medium
8	Montana	3	Small and medium
9	Nevada	124	Mix of small medium and large
10	New York	4	Large
11	Oregon	4	Medium and small
12	Texas	19	Small and Medium
13	Utah	11	Mix of small, medium and large
14	Washington	9	Mix of small and medium
15	Wyoming	30	All Small

Combinations (Mine Sites)	No of Mines	Cumulative Power Capacity (MW)	Cumulative Yearly Energy Storage (MWh)	Percentage of Total US Electricity Generation in 2020	Percentage of RE electricity generation in 2020
(1) Current and past producers; semi underground and underground					
	968	285,560	564,440,800	14.11	71.27
(2) Past producers and underground					
	673	198,535	392,426,300	9.81	49.55
(3) Current producer and underground	33	9,735	19,242,300	0.48	2.43
(4) Past producers; semi and completely underground	873	257,535	509,046,300	12.73	64.27
(5) Surface-underground; past and current producers	262	77,290	152,772,200	3.82	19.29
(6) Surface underground; current producers	62	18,290	36,152,200	0.90	4.56

Yearly U.S. PUSH potential based on 10% Mather B's storage capacity, partially underground

Combinations	No of Mines	Cumulative Power	Cumulative Yearly Energy	Percentage of Total US	Percentage of RE
(Mine Sites)		Capacity (MW)	Storage (MWh)	Electricity Generation in 2020	electricity generation in 2020
(1) Current and past					
producers; semi					
underground and					
underground	968	137,456	271,040,000	6.78	34.22
(2) Past producers and					
underground	673	95,566	188,440,000	4.71	23.79
(3) Current producer and					
underground	33	4,686	9240,000	0.23	1.17
(4) Past producers; semi and completely					
underground	873	123,966	244,440,000	6.11	30.86
(5) Surface-underground;					
past and current					
producers	262	37,204	73,360,000	1.83	9.26
(6) Surface underground;					
current producers	62	8,804	17,360,000	0.43	2.19

Yearly U.S. PUSH potential based on 10% Mather B's capacity, completely underground

Yearly U.S. PUSH potential based on 80% Mather B's capacity, four pumping/discharge cycles a year

Combinations	No of Mines	Optimal PUSH	Cumulative Power	Cumulative Yearly	Percentage of Total	Percentage of RE
(Mine Sites)		Facility	Capacity (MW)	Energy Storage	US Electricity	electricity generation
		Scenario		(MWh, 4 seasonal	Generation in 2020	in 2020
				cycles)		
(1) Current and past		Model 3 scenario 2				
producers; semi		(high volume)				
underground and						
underground	185		8,695	8,009,760	0.20	1.01
(2) Past producers and		Model 3 scenario 2				
underground	104	(high volume	4,888	4,502,784	0.11	0.57
(3) Current producer and		Model 3 scenario 2				
underground	13	(high volume	611	562,848	0.01	0.07
(4) Past producers; semi		Model 3 scenario 2				
and completely		(high volume				
underground	141		6,627	6,104,736	0.15	0.77
		Model 3, Scenario 1				
(5) Surface-underground;		(high volume)				
past and current						
producers	68		3,196	11,356,000	0.28	1.43
(0) O		Model 3, Scenario 1				
(6) Surface underground;		(high volume)				
current producers	31		1,457	5,177,000	0.13	0.65

Legal and regulatory issues

- 1. Hydroelectric power facility
- 2. Grid-connected storage facility
- 3. Decommissioned mine as real property
- 4. Brownfield site
- 5. Industrial facility within the boundaries of a municipality
- 6. Heritage site
- 7. Enabler of the decarbonization effort

Thank you! rsidortsov@mtu.edu